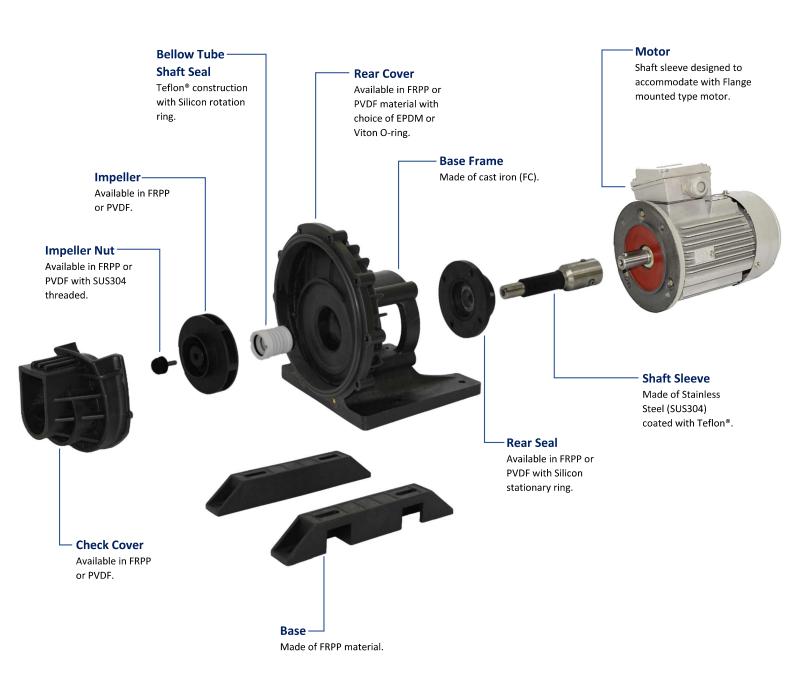


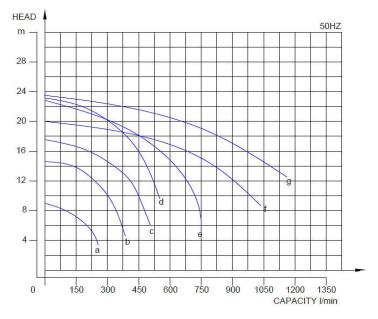
Horizontal Self-Priming Acid/Alkaline-Resist Pump

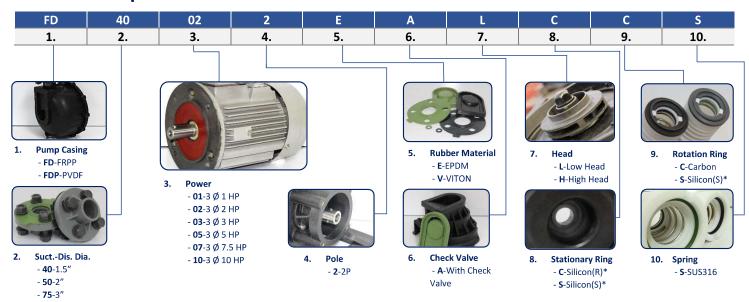
Features

- Self-Priming designed with built-in swing check valve for prevents liquid back-flow into the pump.
- Pump casing is available in FRPP & PVDF material for strong resistance to corrosion, acid and alkaline.
- Maximum working temperature: FRPP: 65 °C PVDF: 90 °C
- Teflon® coated stainless steel shaft sleeve equipped with special designed shaft seal "Teflon® bellow tube" featuring self-cooling ability and provided protection against chemical liquid exposure.



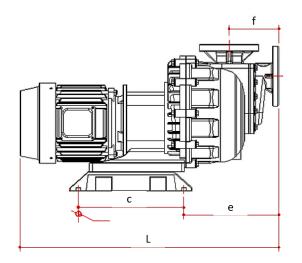
Applications

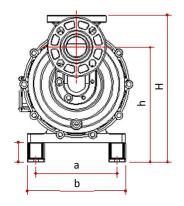

- Water treatment.
- Chemical or water recirculation.
- Plating solutions.

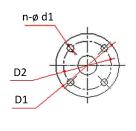


Performance Curve

Code Description


Specification Table


Model	Curve No.	Max. Head	Max. Capacity	Suct./Dis.		Weight		
iviodei	curve No.	(m)	(I/min)	Diameter (inch)	Phase	Pole	HP	(kg)
Frequency: 50) Hz							
FD-40012	а	9	266	1.5" / 1.5"	3	2	1	26
FD-40022	b	14.5	383	1.5" / 1.5"	3	2	2	33
FD-50032	С	17.5	500	2" / 2"	3	2	3	42
FD-50052	d	23	533	2" / 2"	3	2	5	68
FD-75052	е	23	750	3" / 3"	3	2	5	70
FD-75072	f	20	1033	3" / 3"	3	2	7.5	120
FD-75102	g	23.5	1133	3" / 3"	3	2	10	140

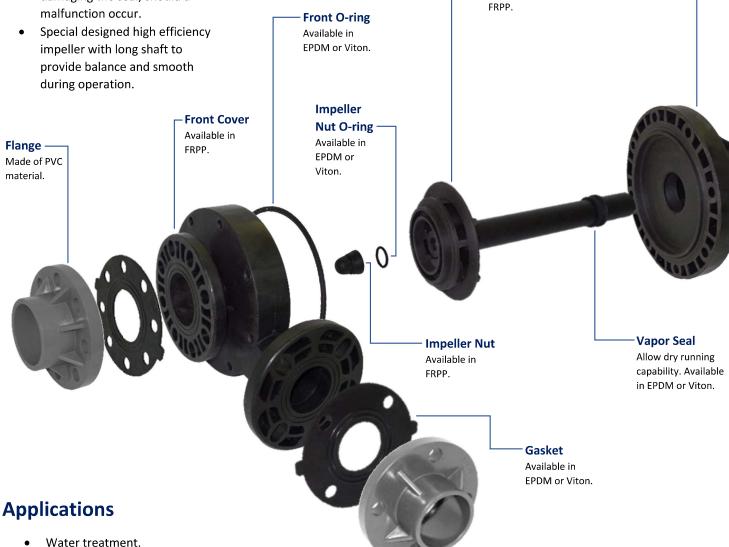

^{*}Silicon(R) = Recrystallized Silicon Carbide *Silicon(S) = Pressureless Sintering Silicon Carbide

Dimension

Model	L	Н	а	b	С	е	f	h	i	D1	D2	n-ø d1
FD-40012	656	370	208	253	275	239	130	298	50	140	105	4-ø 19
FD-40022	665	380	208	253	275	269	130	298	50	155	120	4-ø 19
FD-50032	665	380	208	253	275	269	130	298	50	155	120	4-ø 19
FD-50052	790	380	208	253	275	269	130	298	50	155	120	4-ø 19
FD-75052	793	404	216	261	275	300	112	216	50	188	150	8-ø 20
FD-75072	859	414	340	370	181	389	112	226	25	188	150	8-ø 20
FD-75102	859	414	340	370	181	389	112	226	25	188	150	8-ø 20

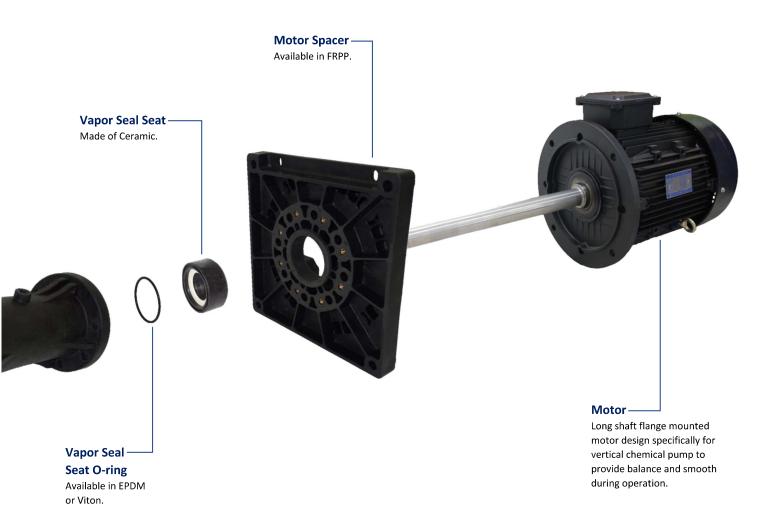
Main Body-

Available in FRPP.


Impeller

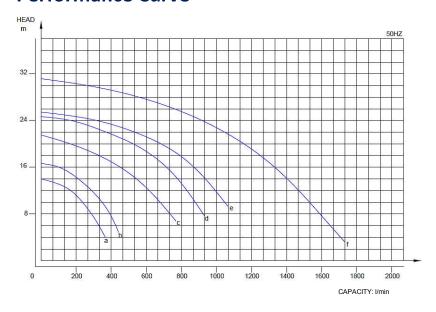
Available in

Vertical Acid/Alkaline-Resist Pump

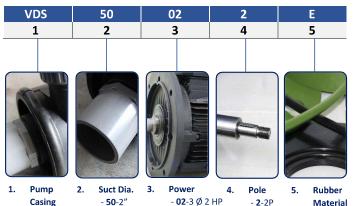

Features

- Vertical designed mold injection pump casing, available in FRPP material for acid, alkaline and corrosion resistant.
- Maximum working temperature: FRPP: 65 °C
- Equipped with dry shaft vapor seal type to provide friction free during operation and allows the pump to dry running without damaging the seal, should a malfunction occur.

- Chaminal an wate
- Chemical or water recirculation.
- Plating solutions.
- Heat exchanger

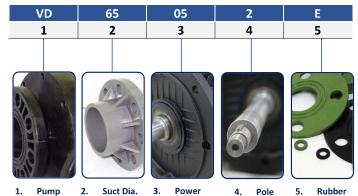


Vapor Seal Features Stop Running


Performance Curve

Code Description

VDS Series


Casing - VDS-FRPP - **50**-2"

- **03**-3 Ø 3 HP

- **2**-2P

Material - E-EPDM - **V**-VITON

VD Series

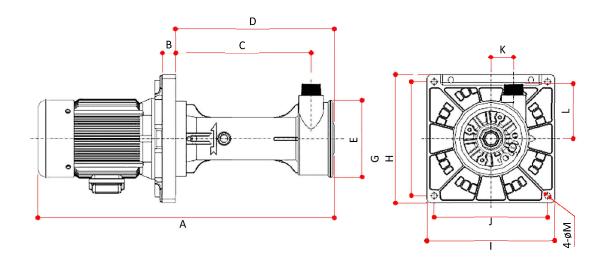
1. Pump Casing

- VD-FRPP

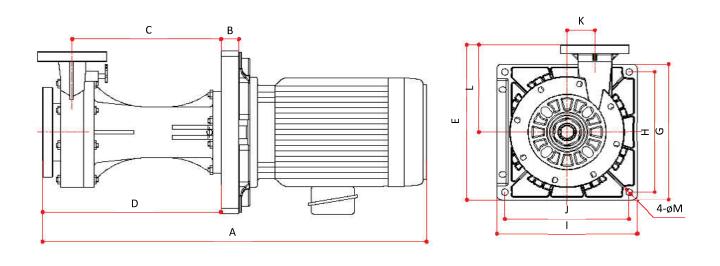
- **65**-2.5" - **75**-3" - **100**-4"

Power - **05**-3 Ø 5 HP - **07**-3 Ø 7.5 HP

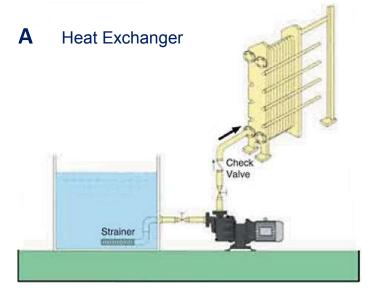
- **10**-3 Ø 10 HP - **15**-3 Ø 15 HP Pole 5. - **2**-2P

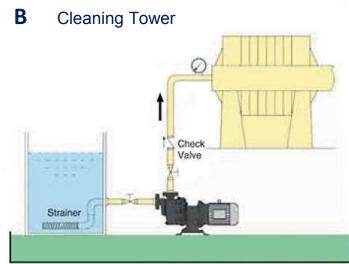

Material - E-EPDM - **V**-VITON

Specification Table


Model	Curve No.	Max. Head	Max. Capacity	Suct./Dis.		Weight		
iviouei	curve No.	(m)	(I/min)	Diameter (inch)	Phase	Pole	HP	(kg)
Frequency: 50	Hz							
VDS-50022	а	14	350	2" / 1.5"	3	2	2	21
VDS-50032	b	17	433	2" / 1.5"	3	2	3	28
VD-65052	С	21	766	2.5" / 2"	3	2	5	60
VD-75072	d	25	933	3" / 2.5"	3	2	7.5	92
VD-75102	е	25.5	1050	3" / 2.5"	3	2	10	110
VD-100152	f	31.5	1750	4" / 4"	3	2	15	123

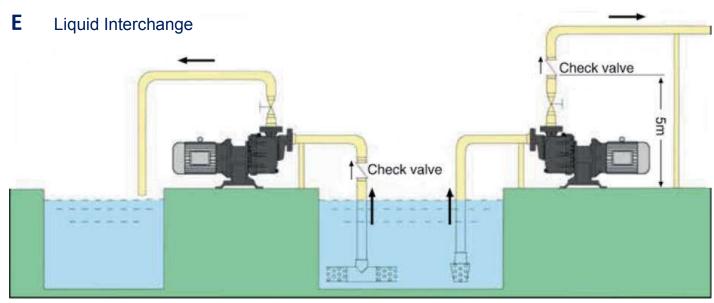
Dimension

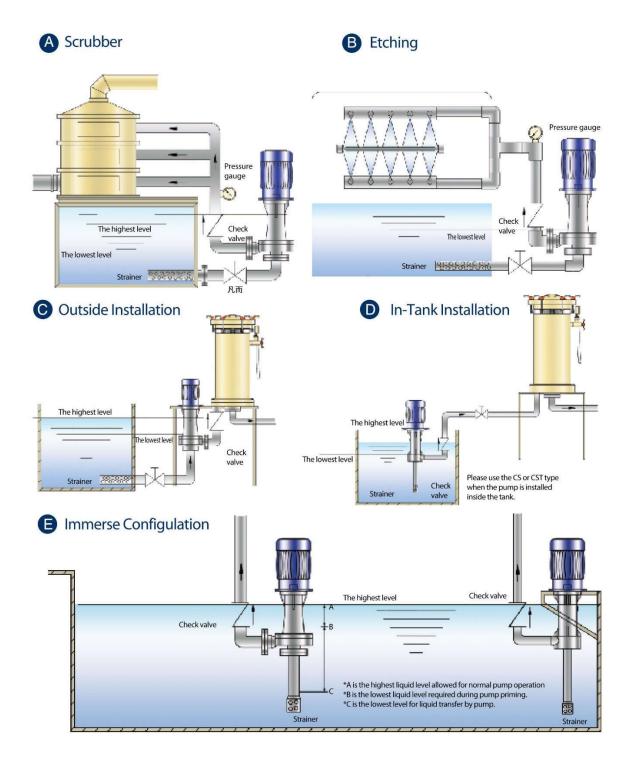

Model	Α	В	С	D	E	G	Н	1	J	K	L	M
VDS-50022	712	32	337	395	190	320	280	320	280	56	136	15
VDS-50032	741	32	337	395	190	320	280	320	280	56	136	15



Model	Α	В	С	D	E	G	Н	1	J	K	L	M
VD-65052	795	32	357	430	360	320	280	320	280	63	200	15
VD-75072	875	32	357	430	360	320	280	320	280	63	200	15
VD-75102	900	32	357	430	360	320	280	320	280	63	200	15
VD-100152	920	32	362	430	360	320	280	320	280	68	200	15




Application Sample



Application Sample

Cautions

- 1. Set a check valve at outlet of the pump if the outlet pipeline is higher than the pump and may cause back flow. Do not put the check valve higher than the highest liquid level in tank too much.
- 2. Set a strainer at the end of inlet to keep the pump from being damaged by impurities. (The total area of the strainer should be more than 5 times of the suction size.)
- 3. Please contact our technician if any special demand required. For example, anti-explosion motor.
- 4. Motor should be anti-corrosion coated for special corrodent environment.

CORROSION RESISTANCE CHART

CHEMICAL NAME	CONCEN-	TEMPER-		BODY MATERI			EAL MATERIAL			BBER MATE	
	TRATION %	ATE °C	FRPP	CFRPP	PVDF	Ceramic	Carbon	Sic	NBR	EPT	VITON
		40	•	•	•	•	•	•	•	•	•
	30	60	•	•	•	•	•	•	1	•	•
		80	•	•	•	•	•	•		0	•
		95		_	•	•	•	•			•
H₂SO₄		40	•	•	•	•	•	•		•	•
Sulfuric acid	60	60	•	•	•	•	•	•		•	•
	00	80	0	0	•	•	•	•		0	•
		95			•			•			•
		40			•	•		•			•
	98	60			0	•		•			•
		40	•	•	•	0	•	•		•	•
	15	60	•	•	•	•	•	•		•	•
HCL	10	80	0	0	•	•	•	÷	+	0	•
Hydrochloric		40	ĕ	•	•			÷	+	0	0
acid	00			_					+		
	32	60	•	•	•	•	•	•	1		
		80	0	0	•	•	•	•			
CrO ₂	_	40		ļ	•	•	ļ	•			•
Chromic acid	20	60			•	•		•			•
555 doid		80			•	•		•			0
		40	•	•	•	•		•			•
11110	20	60	0	0	•	0		•			•
HNO ₂		80	0	0	•	1	1	•			•
Nitric acid		40	•	•	•	1		•			•
	50	60	0	0	•	+		•	+		•
		40	ě	•	•	•	•	Ť	•	•	•
	05		•	•	•	•	•	•	0	•	
H₂PO₄	25	60		_					<u> </u>		
Phosphoric		80	0	0	•	•	•	•	.	0	•
acid		40	•	•	•	•	•	•		•	•
	50	60	•	•	•	•	•	•		0	•
		80	0	0	•	0	•	•		0	•
NaOCI	10	40	0	0	•	•	0	•			•
Sodium		60	Δ	Δ	•	•	Δ	•			•
Hypochlorite		80	×	Δ	•	•	×	•			•
,,		40	•	•	•	•	•	•	+		×
CH2COOH	25	60	•	•	•	•	•	·	+		×
Acetic acid	25	80	0	0	•	•	•	-	+		×
					_				1		
HF		40	×	•	•	×	0	•		•	•
Hydrofluoric	25	60	×	0	•	×	0	•	.	•	•
,		80	×	×	•	×	0	•		0	•
HC I +HNO₂		40	×	×	•	•	×	•	×		0
-	3:1	60	×	×	•	0	×	•	×		0
Aguaregia		80	×	×	•	1	×	•	×		•
		40	•	•	•	•	×	•	×		•
H ₂ O ₂	10	60	0	0	•	•	×	•	×		•
Hydrogen Peroxide		80	×	×	•	•	×	•	×		•
		40	•	•	•	Δ	•	<u> </u>	•	•	0
NaOH	45	60	0	0	0	×	•	-			$\frac{D}{D}$
Caustic soda	4 0	80	0	0	×	×	•		0	0	_
								•			<u> </u>
FeCl₃		40	•	•	•	•	•	•	•	•	•
Ferric chloride		60	•	•	•	•	•	•	0	•	•
		80	•	•	•	•	•	•	1	•	•
Ca (CN) ₂		40	•	•	•	Δ	•	•	•		•
Ca (CN) ₂ Copper Cyanide		60	•	•	•	Δ	•	•	•		•
Copper Cyaniue		1									
Zn Cl₂		40	•	•	•	•	•	•	•		•
Zine Chlorate		60	•	•	•	•	•	•	•	1	•
		40	•	•	•	•	•	•	•		
NiSO₄		60		•	•	•	•	•			•
Nickel Sulfate					_	_		_	_		

[■] EXCELLENT O GOOD △ NOT GOOD × BAD